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Abstract

Automatic text categorization is a problem of assigning text documents to pre-defined categories. In
order to classify text documents, we must extract useful features. In previous researches, a text document is
commonly represented by the term frequency and the inverted document frequency of each feature. Since
there is a difference between important sentences and unimportant sentences in a document, the features
from more important sentences should be considered more than other features. In this paper, we measure
the importance of sentences using text summarization techniques. Then we represent a document as a
vector of features with different weights according to the importance of each sentence. To verify our new
method, we conduct experiments using two language newsgroup data sets: one written by English and the
other written by Korean. Four kinds of classifiers are used in our experiments: Naive Bayes, Rocchio, k-
NN, and SVM. We observe that our new method makes a significant improvement in all these classifiers
and both data sets.
© 2002 Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of text categorization is to classify documents into a certain number of pre-defined
categories. Text categorization is an active research area in information retrieval and machine
learning. A wide range of supervised learning algorithms has been applied to this area using a
training data set of categorized documents. For examples, there are Naive Bayes (McCallum &
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Nigam, 1998; Ko & Seo, 2000), Rocchio (Lewis, Schapire, Callan, & Papka, 1996), Nearest
Neighbor (Yang, Slattery, & Ghani, 2002), and Support Vector Machines (Joachims, 1998).

A text categorization task consists of the training phase and the text classification phase. The
former includes the feature extraction process and the indexing process. The vector space model
has been used as a conventional method for text representation (Salton, Fox, & Wu, 1983). This
model represents a document as a vector of features using term frequency (TF) and inverted
document frequency (IDF). This model simply counts TF without considering where the term
occurs. But each sentence in a document has different importance for identifying the content of
the document. Thus, by assigning a different weight according to the importance of the sentence to
each term, we can achieve better results. For this problem, several techniques have been studied.
In the first technique, term weights are differently weighted by the location of a term, so that the
structural information of a document is applied to term weights (Murata et al., 2000). But this
method supposes that only several sentences, which are located at the front or the rear of a
document, have the important meaning. Hence it can be applied to only documents with a fixed
form such as articles. The next technique uses the title of a document in order to choose the
important terms (Mock, 1996). The terms in the title are handled importantly. But a drawback of
this method is that some titles, which do not properly contain the meaning of the document, can
rather increase the ambiguity of the meaning. This case often comes out in documents with an
informal style such as Newsgroup and Email.

To overcome these problems, we have studied text summarization techniques. Among text
summarization techniques, there are statistical methods and linguistic methods (Goldstein,
Kantrowitz, Mittal, & Carbonell, 1999; Marcu, 1999; Radev, Jing, & Stys-Budzikowska, 2000).
Since the former methods are simpler and faster than the latter methods, we choose the former
methods to be applied to text categorization. Therefore, we employ two kinds of text summari-
zation techniques; one measures the importance of sentences by the similarity between the title
and each sentence in a document, and the other by the importance of terms in each sentence.

In this paper, we use the summarization techniques for classifying important sentences and
unimportant sentences. The importance of each sentence is measured by them. Then the term
weights in each sentence are modified in proportion to the calculated sentence importance. To test
our proposed method, we used two different newsgroup data sets; one is a well known data set, the
Newsgroup data set by Ken Lang, and the other was gathered from Korean UseNet discussion
group. As a result, our proposed method showed a better performance than the basis system
in both data sets.

The rest of this paper is organized as follows. Section 2 explains the proposed text categori-
zation system in detail. In Section 3, we simply describe other classifiers used in our experiments.
Section 4 presents the discussion of empirical results in our experiments and the analysis of our
indexing method. The final section presents conclusions and future works.

2. The proposed text categorization system
The proposed system consists of two modules as shown in Fig. 1: one module for training phase

and the other module for text classification phase. The each process of Fig. 1 is explained in the
following sections in detail.
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Fig. 1. Overview of the proposed system.

2.1. Pre-processing

A document from newsgroup data is composed of author, date, group, server, message 1D,
title, and body. In our system, we use only the contents of title and body.

The contents of documents are segmented into sentences. Then we extract content words from
each sentence and represent each sentence as a vector of content words. To extract the content
words, we use two kinds of POS taggers: Brill tagger for English and Sogang POS tagger for
Korean. We consider words annotated with noun or verb tag as content words.

2.2. Feature selection

The size of vocabulary in our experiment is selected by ranking words according to their y?
statistics values with respect to the category (Yang & Pedersen, 1997). Using the two-way con-
tingency table of a word ¢ and a category ¢, the word-goodness measure is defined as follows:

N X (4D — CB) .
A+ C)x (B+D)x (44 B) x (C+D) (1)
where A4 is the number of times ¢ and ¢ co-occur, B is the number of times ¢ occurs without ¢, C
is the number of times ¢ occurs without ¢, D is the number of times neither ¢ nor ¢ occurs, and N
is the total number of documents.
To measure the goodness of a word in a global feature selection, we combine the category-
specific scores of a word as follows:

2(1) = mlax{£(t,e)} )

Xz(t’ C) = (

where m denotes the number of categories.
The above y? statistics values are calculated from training data.
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2.3. Measuring the importance of sentences

The importance of each sentence is measured by two methods. First, the sentences, which are
more similar to the title, have higher weights. In the next method, we first measure the importance
of terms by TF, IDF, and y? statistics values. Then we assign the higher importance to the sen-
tence with more important terms. Finally, the importance of a sentence is calculated by combi-
nation of two methods.

2.3.1. The importance of sentences by the title

Generally, we believe that a title summarizes the important content of a document (Endres-
Niggemeyer et al., 1998). By Mock (1996), terms that occur in the title have higher weights. But
the effectiveness of this method depends on the quality of the title. In many cases, the titles of
documents from Newsgroup or Email do not properly represent the contents of these documents.
Hence we use the similarity between each sentence and the title instead of directly using terms in
the title. The similar sentences to the title contain the important terms generally. For example, let
us consider the following title; “I have a question.” This title does not contain any meaning about
the contents of a document. Nevertheless, sentences with the term, ‘question’, should be handled
importantly because they can have key terms about the question.

We measure the similarity between the title and each sentence, and then we assign the higher
importance to the sentences with the higher similarity. The title and each sentence of a document
are represented as the vectors of content words. The similarity value of them is calculated by the
inner product and the calculated values are normalized into values between 0 and 1 by a maxi-
mum value. The similarity value between the title 7 and the sentence S; in a document d is cal-
culated by the following formula:

— —

Si-T

Sim(S,-, T) = =
maxsjed(Sj -T)

3)
where 7 denotes a vector of the title, and S, denotes a vector of sentence.

2.3.2. The importance of sentences by the importance of terms

Since the method by the title depends on the quality of the title, it can be useless in the document
with a meaningless title or no title. Besides, the sentences, which do not contain important terms,
need not be handled importantly although they are similar to the title. On the contrary, sentences
with important terms must be handled importantly although they are dissimilar to the title.

Considering these points, we first measure the importance values of terms by TF, IDF, and »*
statistics values, and then the sum of the importance values of terms in each sentence is assigned
to the importance value of the sentence. In this method, the importance value of a sentence S;
in a document d is calculated as follows:

D oies, tH(2) x idf(2) x 22 (r)
maxs,cg { 3, (1) x idf (1) x XZ(t)}

where tf(¢) denotes the term frequency of term ¢, idf(¢) denotes the inverted document frequency,
and 7*(¢) denotes the y* statistics values.

Cen(S;) =

(4)
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2.3.3. The combination of two sentence importance values
Two kinds of sentence importance are simply combined by the following formula:

Score(S;) = 1.0 + &y x Sim(S;, T') + k> x Cen(S;) (5)

In formula (5), the k; and %, are constant weights, which control the rates of reflecting two im-
portance values. The 1.0 constant value is added to a calculated sentence importance value in
order to prevent the modified TF value having lower value than original TF value by formula (6):

2.3.4. The indexing process

The importance value of a sentence by formula (5) is used for modifying the TF value of a term.
That is, since a TF value of a term in a document is calculated by the sum of the TF values of
terms in each sentence, the modified TF value (WTF(d, 7)) of the term ¢ in the document d is
calculated by formula (6):

WTF(d, 1) = > tf(S;, 1) x Score(S;) (6)
Sied
where tf(S;, ) denotes TF of the term ¢ in sentence S;.

By formula (6), the terms, which occur in a sentence with the higher importance value, have
higher weights than the original TF value. In our proposed method, we compute the weight
vectors for each document using the WTF and the conventional TF-IDF scheme (Salton &
Buckley, 1988). The weight of a term 7 in a document d is calculated as follows:

WTF(d,t) x log <N>

nt

w(d,t) =

(7)

T

s (2)]

i=1

where N is the number of documents in the training set, 7 is the number of features limited by
feature selection, and 7, is the number of training documents in which ¢ occurs.

The weight by formula (7) is used in .-NN, Rocchio, and SVM. But Naive Bayes classifier uses
only WTF value.

3. Other classifiers used in our experiments

To verify our proposed system, we built Naive Bayes, Rocchio, k~-NN, and SVM classifier.
In this section, these classifiers are briefly described.

3.1. Naive Bayes

Naive Bayes probabilistic classifiers are also commonly used in text categorization
(McCallum & Nigam, 1998; Ko & Seo, 2000; Yang et al., 2002). The basic idea is to use the joint
probabilities of words and categories to estimate the probabilities of categories given a document.
The naive part of such a model is the assumption of word independence. We use the Naive Bayes
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classifier with minor modifications based on Kullback—Leibler divergence (Ko & Seo, 2000;
Craven et al., 2000). Given a document d for classification, we calculate the probabilities of each
category ¢; as follows:

Pr(cj|d) = W = Pr(cj) g Pr(ti|Cj)N("|d)
m%+2ﬁ(n|af) log (%) "

where #n is the number of words in document d, ¢; is the ith word in the vocabulary, T is the size
of the vocabulary, N(#|d) is the frequency of word ¢ in document d.

The category predicted by this classifier for a given document is simply a category with the
highest score. Here, the expected likelihood estimator (Li & Yamanish, 1997) is used for the es-
timates of the probability of word ¢ in category ¢ and that of word ¢ in document d as follows:

N(tle) + 0.5

T3k ©)

2 s N(le) +0.5 < I.
N(t|d) + 0.5

P = Ny +0.5 % T .

Pr(tfe)

where N (t;|c) is the frequency of word # in category c. In the proposed method, N(z;|c) and N(¢;|d)
in formulae (9) and (10) are calculated by WTF instead of TF.

3.2. Rocchio

Rocchio is an effective method using relevance judgments for query expansion in information
retrieval and filtering (Lewis et al., 1996; Salton & Buckley, 1990). Applied to text categorization,
it uses a vector to represent each category and document, and computes their similarity using the
cosine value of these two vectors. Then a test document is assigned to a category with the highest
cosine score. The vector representation for a category, called prototype or centroid, is constructed
by combining document vectors into a prototype vector ¢; for each category ¢;. First, both the
document vectors of the positive examples and those of the negative examples are summed up.
The prototype vector is then calculated as a weighted difference of each as follows:

1 - 1 -
Gi=oa— Y d—pf—— d 11
¢ “|Ci|Z ﬁ|N—c,—\ AZ (11)

where N is the number of documents in the training set, and o,  are parameters that adjust the
relative impact of positive and negative training examples.

3.3. k-Nearest Neighbor (k-NN) algorithm

As an instance-based classification method, k-NN has been an effective approach to a broad
range of pattern recognition and text classification problems (Duda, Hart, & Stork, 2001; Yang
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et al., 2002). In k-NN algorithm, a new input instance should belong to the same category as their
k-nearest neighbors in the training data set. After all the training data is stored in memory, a new
input instance is classified with the category of the k-nearest neighbors among all stored training
instances.

We use the conventional vector space model in text categorization, which represents each
document as a vector of term weights and the similarity between two documents is measured by
using the cosine value of the angle between the corresponding vectors (Yang et al., 2002).

Given an arbitrary test document d, the k-NN classifier assigns a relevance score to each
candidate category ¢; using the following formula:

s(chd)= Y cos(d,d) (12)
d' R (d)ND;
where Ry (d) is the set of k-nearest neighbors of document d, and D; is the set of training docu-
ments in category c;.
By sorting the scores of all candidate categories, we obtain a ranked list of categories for each
test document. Since documents of our data sets have only one category, we assign the only top
ranking category to each document.

3.4. Support vector machines

Support vector machines (SVM) was proposed by Vapnic (1995) for solving two-class pattern
recognition problems. The SVM problem is to find the decision surface that maximizes the margin
between positive examples and negative examples in a training data.

The decision surface by SVM for linearly separable space is a hyperplane as follows:

Wx¥—b=0 (13)

X is an arbitrary test data vector, and the vector w and the constant b are learned from a training
data set.

The SVM problem can be solved using quadratic programming techniques (Vapnic, 1995). The
algorithms for solving linearly separable cases can be extended for solving linearly non-separable
cases by mapping the original data vectors to a space of higher dimensions.

Since the SVM is a binary classifier, we must extend it to multi-class classifier. There are several
methods of multi-class classifier for SVM (Weston & Watkins, 1999). We employ the One-
Against-the Rest method among them. This method requires k binary classifiers f,(x) (1 <¢; <k)
to be constructed for all categories. In training for category ¢;, all data of category c¢; are used as
positive examples and all data of the other categories as negative examples. Given a test example
x, its category ¢ is determined by the classifier that gives the largest discriminating function value
as follows:

¢ = arg max f, (x) (14)

Joachims (1998) implemented an efficient SVM toolkit, SVM"€". This toolkit was used in our
experiments.
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4. Empirical evaluation
4.1. Data sets and experimental settings

To test our proposed system, we used two newsgroup data sets written by two different lan-
guages: English and Korean. Each document in both data sets has only one category.

The Newsgroups data set, collected by Ken Lang, contains about 20,000 documents evenly
divided among 20 UseNet discussion groups (McCallum & Nigam, 1998). 4000 documents (20%)
were used for test data and the remaining 16,000 documents (80%) for training data. Then 4000
documents from training data were selected for a validation set. After all parameter values of our
experiments were set from the validation set, we evaluated our method by using the fivefold cross-
validation method. That is, each data set was split into five subsets, and each subset was used once
as test data in a particular run while the remaining subsets were used as training data for that run.
The split into training and test sets for each run was the same for all classifiers. Therefore, all
results of experiments using this data set are averages of five runs. After removing words that
occur only once or on a stop word list, the vocabulary from training data has 51,018 words (with
no stemming).

The second data set was gathered from the Korean UseNet group. This data set contains a total
of 10,331 documents and consists of 15 categories. 3107 documents (30%) are used for test data
and the remaining 7224 documents (70%) for training data. The resulting vocabulary from
training data has 69,793 words. This data set is an uneven data set as shown in Table 1.

We used y? statistics for the statistical feature selection (Yang & Pedersen, 1997). To evaluate
our method, we implemented Naive Bayes, k-NN, Rocchio, and SVM classifier. The k in k-NN
was set to 30, and o = 16 and f§ = 4 were used in the Rocchio classifier. This choice was based on

Table 1

The constitution of Korean newsgroup data set
Category Training data Test data Total
han.arts.music 315 136 451
han.comp.database 198 86 284
han.comp.devtools 404 174 578
han.comp.lang 1387 595 1982
han.comp.os.linux 1175 504 1679
han.comp.os.window 517 222 739
han.comp.sys 304 131 435
han.politics 1469 630 2099
han.rec.cars 291 126 417
han.rec.games 261 112 373
han.rec.movie 202 88 290
han.rec.sports 130 56 186
han.rec.travel 102 45 147
han.sci 333 143 476
han.soc.religion 136 59 195

Total 7224 3107 10,331
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previous parameter optimization learned by the validation set. For SVM, we used the linear
model offered by SVM'sh,

As performance measures, we followed the standard definition of recall (r), precision (p), and
F, measure (2rp/(r + p)). For evaluating an average performance across categories, we used the
micro-averaging method and macro-averaging method (Yang, 1999). The recall, precision and F
measure can first be computed for individual categories, and then averaged over categories as a
global measure of the average performance over all categories; this way of averaging is called
macro-averaging. An alternative way, micro-averaging, is to count the decisions for all the cate-
gories in a joint pool and compute the global recall, precision and F; values for that global pool.
Since a document in our data sets has a single category label, micro-averaged accuracy, precision,
recall, and F; scores are all equal. Hence all of the above measures can be used interchangeably
in micro-averaged results.

4.2. Experimental results

We tested our system through the following steps. First, using the validation set of Newsgroup
data set, we set the number of features and the constant weights (k; and &) in the combination of
two importance values in the Section 2.3.3. Then, using the resulting values, we conducted ex-
periments and compared a basis system with our proposed system; the former system used the
conventional TF for Naive Bayes and conventional TF-IDF for the other classifiers, and the latter
system used WTF by formula (6) for Naive Bayes and the weights by formula (7) for the other
classifiers.

4.2.1. Setting the number of features

First of all, we set the number of features in each classifier using the validation set of training
data. The number of features in this experiment was limited by feature selection. Fig. 2 displays
the performance curves for the proposed system and the basis system using SVM. We simply set
both constant weights (k; and k) to 1.0 in this experiment.

‘+basis system(SVM) —=— proposed system (SVM) ‘
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Fig. 2. Comparison of proposed system and basis system using SVM.
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As shown in Fig. 2, the proposed system achieved a better performance than the basis system
over all intervals. We set the number of features for SVM to 7000 with regard to the convergence
of the performance curve and running time. By the similar method, the number of features in
other classifiers was set: 7000 for Naive Bayes, 10,000 for Rocchio, and 9000 for £.-NN. Note that,
over all intervals and all classifiers, the performance of the proposed system was better than that
of the basis system.

4.2.2. Setting the constant weights k; and k;

Prior to the experiment for setting the constant weights, we evaluated two importance measure
methods and their combination method individually; we used simply the same value for &, and &,
(ky = ky) in the combination method. We observed the results in each interval when constant
weights were changed from 0.0 to 3.0. In Fig. 3, Sim(S, T) denotes the method by the title, Cen(S)
denotes the method by the importance of terms, and Sim(S, 7') + Cen(S) denotes the method by
the combination method.

In this experiment, we used SVM as a classifier and set feature number to 7000. We mostly
obtained a best performance in the combination method.

In order to set the constant weights k; and k, in each classifier, we carried out a total of 900
trials on the validation set because each method had 30 intervals from 0.0 to 3.0 (interval size: 0.1).
As a result, we obtained the best performance at 1.5 (k) and 0.4 (k) for SVM: 1.9 and 3.0 for
Naive Bayes, 2.0 and 0.0 for Rocchio, and 0.8 and 2.8 for k<-NN. These constant weights of each
classifier were used in the following experiments.

4.2.3. Results in two newsgroup data sets

In this section, we report the results in two newsgroup data sets (see Tables 2 and 3).

In both data sets, the proposed system produced a better performance in all four classifiers. As
a result, our proposed method can improve the classification performance with all four classifiers
in both English and Korean.

—e— basis system —<— Sim(S,T)
—— Cen(S) —m— Sim(S,T)+Cen(S)
86.5%
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©
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Il J
0.0 01 02 03 04 05 06 0.7 08 09 10 15 20 25 3.0
Experimental constants (K ,k2)

Fig. 3. Comparison of importance measure methods in different constant weights (k; and k).
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Table 2
Results in English newsgroup data set

Naive Bayes, F; Rocchio, F k-NN, F SVM, F;

Basis Proposed  Basis Proposed  Basis Proposed  Basis Proposed

system system system system system system system system
Atheism 76.8 77.4 67.6 68.8 70.8 71.6 75.4 76.8
Graphics 75.2 77.1 70.1 72.8 76.9 76.5 79.9 80.7
windows.misc 65.8 73.2 73.3 74.0 74.9 76.0 81.8 83.2
pc.hardware 69.8 72.0 67.4 68.4 68.5 72.7 74.7 75.5
mac.hardware 81.6 83.9 80.0 80.4 71.3 81.6 86.6 87.3
windows.x 86.3 87.3 82.5 82.7 83.6 83.7 88.0 88.3
Forsale 79.7 814 77.9 77.9 69.1 75.5 81.7 81.1
Autos 89.7 91.0 85.6 87.6 86.2 87.0 90.9 91.5
Motorcycles 94.4 94.4 91.2 91.0 90.9 91.4 95.5 95.5
Baseball 96.5 96.6 92.7 93.6 94.4 94.0 95.3 95.5
Hockey 97.7 97.9 94.1 94.4 94.6 94.5 97.0 97.0
Crypt 93.9 94.3 88.8 89.2 92.3 92.7 94.6 95.5
Electronics 76.9 78.1 68.5 71.3 73.9 74.6 81.1 81.3
Med 92.2 91.8 87.8 88.4 89.0 90.1 92.0 92.0
Space 91.6 92.2 89.3 89.3 91.3 91.1 93.5 93.8
Christian 91.9 91.8 79.5 80.3 86.8 90.4 97.1 96.6
Guns 83.5 83.4 77.1 79.2 83.6 82.9 85.4 86.2
Midest 91.5 92.6 91.2 91.8 90.9 92.3 93.2 93.5
politics.misc 71.4 71.9 68.3 69.3 70.1 72.2 75.1 75.6
religion.misc 51.6 51.4 35.2 41.0 58.5 62.0 60.9 64.6
Macro-avg 83.0 84.1 78.6 79.7 81.2 82.6 86.0 86.6
Micro-avg 83.3 84.4 79.1 80.0 81.4 82.7 86.1 86.6

4.3. Verifying our indexing method

Salton argued that a collection of small tightly clustered documents with wide separation be-
tween individual clusters should produce the best performance (Salton, Yang, & Wang, 1975). In
this light, we employed the method used by Salton et al. (1975) to verify our method. We then
conducted experiments in English newsgroup data set (Newsgroup data set) and observed the

resulting values.

We define the cohesion within a category and the cohesion between categories. The cohesion
within a category is a measure for similarity values between documents in the same category. The
cohesion between categories is a measure for similarities between categories. The former is cal-
culated by formula (16), and the latter is calculated by formula (17):

-

1 - 1
CGo=772_4d, Caob =17
[ i 2 = D]

dely

K -
> -G
k=1

(15)

(16)
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Table 3
Results in Korean newsgroup data set

Naive Bayes, F; Rocchio, F k-NN, F; SVM, F;

Basis Proposed  Basis Proposed  Basis Proposed  Basis Proposed

system system system system system system system system
Music 68.8 77.1 61.0 74.4 72.3 80.6 86.5 89.0
Database 66.7 71.7 74.3 75.0 71.3 76.6 81.6 82.7
Devtools 69.0 68.0 64.6 63.2 57.3 60.1 72.6 73.0
Lang 80.6 81.1 79.2 80.1 79.8 80.7 85.1 85.4
Linux 73.9 78.3 79.8 82.2 78.0 78.9 86.9 86.9
Window 68.8 71.0 67.7 69.7 70.6 70.5 77.7 78.7
Sys 65.1 68.8 58.4 62.8 51.0 62.3 74.6 75.2
Politics 95.0 95.2 934 94.7 94.0 93.8 95.6 95.6
Cars 91.2 92.6 88.0 87.8 86.8 87.8 90.3 90.7
Games 65.0 68.0 68.2 72.0 70.2 73.6 76.4 77.4
Movie 79.8 85.4 84.0 84.6 88.4 89.1 89.0 90.1
Sports 82.9 83.2 87.2 84.7 89.3 88.5 91.9 91.9
Travel 81.6 84.2 83.9 77.2 76.7 78.9 88.4 89.4
Sci 84.9 85.4 74.7 79.7 80.6 80.0 79.7 82.2
Religion 86.4 88.2 82.4 85.5 94.0 93.2 91.8 91.9
Macro-avg  78.4 80.8 76.5 78.2 77.4 79.6 84.5 85.3
Micro-avg  79.1 81.3 78.7 80.1 79.9 81.3 86.0 86.5

1 K S S
Coneeen = 71 O sl (Ctow - Ci ) 17
between |D| ;’ k’ glob k ( )

where D denotes the total training document set, /; denotes training document set in kth category,
C, denotes a centroid vector of kth category, and C’glob denotes a centroid vector of the total
training documents.

In formulae (15), C; is described by the mean vector of each category, and églob is represented
by the mean vector of all training vectors. The cohesion within a category in formula (16) is
calculated by averaging cosine similarity values between C, and each document of kth category,
and the cohesion between categories in formula (17) is calculated by averaging cosine similarity
values between Cyop, and Cy.

An indexing method with a high cohesion within a category and a low cohesion between
categories should produce a better performance in text categorization. First, we measured the
cohesion within a category in each indexing method: the basis method by the conventional TF—
IDF, the method by the title (Sim(S, 7)), the method by the importance of terms (Cen(S)), and the
method by the combination method (Sim(S, T') + Cen(S)). Fig. 4 shows the resulting curves in
each different constant weight; we simply used the same values for £, and &, in the combination
method.

As shown in Fig. 4, Cen(S) shows the highest cohesion value, but Sim(S, 7)) does not have
an effect on the cohesion values in comparison with the method by the conventional TF-IDF.

Fig. 5 displays the resulting curves of the cohesion between categories as the same manner
in Fig. 4.
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Fig. 4. The cohesion within a category.
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Fig. 5. The cohesion between categories.

We obtained the lowest cohesion value in Sim(S, 7). Using Cen(S), the resulting cohesion
values are slightly lower than those of the method by the conventional TF-IDF. In both Figs. 4
and 5, the cohesion values of the combination method show the middle values between Sim(S, 7')
and Cen(S).

By the results in Figs. 4 and 5, we can observe that our proposed indexing method reforms the
vector space for a better performance: the high cohesion within a category and the low cohesion
between categories. Using the proposed indexing method, the document vectors in a category are
located more closely and individual categories are separated more widely. These effects were also
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Table 4
Top performance by two different methods
k-NN Rocchio
Sim(S, T) Cen(S) Sim(S, T) Cen(S)
Macro-avg Fy 80.6 82.4 79.7 78.8

observed in our experiments. Since k-NN constructs only a local approximation to the target
function that applies in the neighborhood of the new document, it has an advantage in a vector
space with the high cohesion within a category. On the other hand, Rocchio has an advantage in a
vector space with the low cohesion between categories because the prototype or centroid vector of
each category in Rocchio is used as a criterion vector for classification. We achieved the similar
results in our experiments. That is, k-NN produced a better performance by using Cen(S), and
Rocchio produced a better performance by using Sim(S, 7). Table 4 shows the summarized results
in each individual method of A-NN and Rocchio.

5. Conclusions

In this paper, we have presented a new indexing method for text categorization using two kinds
of text summarization techniques: one uses the title and the other uses the importance of terms.
For our experiments, we used two different language newsgroup data sets and four kinds of
classifiers. Our system achieved a better performance than the basis system did in all these clas-
sifiers and both two languages. Then we verified the effect of the proposed indexing method by
measuring two kinds of cohesion. We confirmed that the proposed indexing method can reform
the document vector space for a better performance in text categorization. As a future work, we
need the additional research for applying more structural information of document to text cate-
gorization techniques.

Acknowledgement

This work is supported by Institute for Applied Science and Technology of Sogang University.

References

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., & Slattery, S. (2000). Learning to
construct knowledge bases from the world wide web. Artificial Intelligence, 118(1-2), 69-113.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: John Wiley and Sons.

Endres-Niggemeyer, B., Haseloh, K., Miiller, J., Peist, S., Sigel, I. S., Sigel, A., Wansorra, E., Wheeler, J., & Wollny, B.
(1998). Summarizing information (pp. 307-338). Berlin: Springer-Verlag.

Goldstein, J., Kantrowitz, M., Mittal, V. O., & Carbonell, J. (1999). Summarizing text documents: sentence selection
and evaluation metrics. In Proceedings of the 23rd international ACM SIGIR conference on research and development
in information retrieval (SIGIR’99).

Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features. In
European conference on machine learning (ECML) (pp. 137-142).



Y. Ko et al. | Information Processing and Management 40 (2004) 65-79 79

Ko, Y., & Seo, J. (2000). Automatic text categorization by unsupervised learning. In Proceedings of the 18th
international conference on computational linguistics (COLING’2000) (pp. 453-459).

Lewis, D. D., Schapire, R. E., Callan, J. P., & Papka, R. (1996). Training algorithms for linear text classifiers.
In Proceedings of the 19th international conference on research and development in information retrieval (SIGIR’96)
(pp- 289-297).

Li, H., & Yamanish, K. (1997). Document classification using a finite mixture model. In Proceedings of the 35th annual
meeting of the association for computational linguistics, ACL’97.

Marcu, D. (1999). Discourse trees are good indicators of importance in text. In Advances in automatic text
summarization (pp. 123-136). Cambridge, MA: MIT Press.

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive Bayes text classification. In 4447’98
workshop on learning for text categorization (pp. 41-48).

Mock, K. J. (1996). Hybrid hill-climbing and knowledge-based techniques for intelligent news filtering. In Proceedings
of the national conference on artificial intelligence (AAAI'96).

Murata, M., Ma, Q., Uchimoto, K., Ozaku, H., Isahara, H., & Utiyama, M. (2000). Information retrieval using
location and category information. Journal of the Association for Natural Language Processing, 7(2).

Radev, D. R., Jing, H., & Stys-Budzikowska, M. (2000). Summarization of multiple documents: clustering, sentence
extraction, and evaluation. In Proceedings of ANLP-NAACL workshop on automatic summarization.

Salton, G., Yang, C., & Wang, A. (1975). A vector space model for automatic indexing. Communications of the ACM,
18(11), 613-620.

Salton, G., Fox, E. A., & Wu, H. (1983). Extended Boolean information retrieval. Communications of the ACM, 26(12),
1022-1036.

Salton, G., & Buckley, C. (1988). Term weighting approaches in automatic text retrieval. Information Processing and
Management, 24, 513-523.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. Journal of American Society
for Information Sciences, 41, 288-297.

Vapnic, V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

Weston, V., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition. In Proceedings of the
seventh European symposium on artificial neural networks (ESANN-99).

Yang, Y., & Pedersen, J. P. (1997). Feature selection in statistical learning of text categorization. In The fourteenth
international conference on machine learning (pp. 412-420).

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Journal of Information Retrieval, 1(1/2),
67-88.

Yang, Y., Slattery, S., & Ghani, R. (2002). A study of approaches to hypertext categorization. Journal of Intelligent
Information Systems, 18(2).



	Improving text categorization using the importance of sentences
	Introduction
	The proposed text categorization system
	Pre-processing
	Feature selection
	Measuring the importance of sentences
	The importance of sentences by the title
	The importance of sentences by the importance of terms
	The combination of two sentence importance values
	The indexing process


	Other classifiers used in our experiments
	Naive Bayes
	Rocchio
	k-Nearest Neighbor (k-NN) algorithm
	Support vector machines

	Empirical evaluation
	Data sets and experimental settings
	Experimental results
	Setting the number of features
	Setting the constant weights k1 and k2
	Results in two newsgroup data sets

	Verifying our indexing method

	Conclusions
	Acknowledgements
	References


